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The two-dimensional nonsteady-state problem of optimum high-speed control of 
the heating of solids, where limitations are imposed on the control of the 
body temperature, the temperature drop, and similar parameters is studied. 

Problems of optimizing the high-speed heating of solids, as described by the one-dimen- 
sional nonsteady-state equation of thermal conductivity, where various limitations are im- 
posed on the phase coordinates, were examined in [1-5]. In [6] we find the conditions ade- 
quate for optimum high-speed n-dimensional diffusion-type processes, in particular, thermal 
conductivity. Based on the results of this reference, we propose in the following a method 
for the construction of an optimum control mechanism for the heating of solids, described 
by a two-dimensional nonsteady-state equation of thermal conductivity. 

The temperature field @(x, y, t) in these solids satisfies the following boundary-value 

problem: l a@ 
A@= --(@, y, t) E D : V •  T]); 

a at  ( 1 )  

,o(x, v, o)=f(x, y)((x, y)EV); 
(2) 

ao  
- -  ~z [ 0  - -  q] ((x, y,  t) E S = aV y, ]0, T]) .  ( 3 )  a~ 

Here q(x, y, t) is the control function (the temperature of the heating medium), bounded from 
above: 

q (x, v, t) ~< u (x, y, t) ((x, v, t~ E S). 
�9 ( 4 )  

Moreover, we must bear in mind during the heating the limitation imposed on the 
parameters of the thermal process at the surface of the material, and in general from these 
can be given by the inequality 

F@ ~ l (x, V, t) ((x, Y, t) E S), (5)  

where F is the operator which determines these parameters, while ~ e C(S) denotes their given 
maximum permissible values. Usually, these parameters include: 

a) the temperature of the material 

FO = @(x, y, t); 

b) the maximum temperature difference 

F O = O ( x ,  y, t ) - -  min @(x, y, /); 
(x ,y)e~ 

c) the flow of heat to the surface of the material 

Fe = a@/a~. 
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We are now confronted with the following optimization problem. It becomes necessary 
to determine such a control function q = w, which within the minimum time t 0 e ]0, T], under 
limitation (4) and (5), will change the material of the solid from the initial state (2) to 
the final state with the mean-integral temperature @s: 

V !" O(x, y, xo)dV = 0 s (6 )  

or with a given temperature O, at some point (x,, y,)e V: 

O(x, ,  y , ,  %) = 0 , .  ( 7 )  

According to the results of [6], in order for the function w(x, y, t) to be optimum with 
respect to high-speed control, it is enough to satisfy the inequality 

(FO~ - -  0 (~ - -  u) = 0 ((x, y, t) E S). ( 8 ) 

Here  0 w i s  t h e  s o l u t i o n  o f  t h e  b o u n d a r y - v a l u e  p r o b l e m  ( 1 ) - ( 3 )  when q = m. 

E q u a l i t y  (8 )  i n d i c a t e s  t h e  s o u g h t  opt imum c o n t r o l  ~ ( x ,  y ,  t )  a t  e a c h  p o i n t  on t h e  s u r -  
f a c e  of the material when t ~ ]0, ~0] is either equal to the maximum possible value of the 
limited parameters, or it allows for the maximum permissible values of these, and the control 
can be written in the form of two equalities: 

(x, y, t ) =  u (x, y, t)((x, y, t)E S=), 

FO~ = t(x, y, t ) ( (x ,  y, t)ES~), 

( 9 )  

(10) 

where S u U Ss = S. 

Then, for purposes of determining the the temperature regime optimum from the standpoint 
of rapid action, it is enough to find the solution for Eq. (I) which satisfies initial condi- 
tion (2), as well as condition (3) when we have q = w at the surface S u, as well as satisfac- 
tion of condition (i0) at the surface S~, while the optimum control at the surface Ss is de- 
termined by substitution of the solution @w into Eq. (3). 

Since the surfaces Ss and S u have not been determined in advance and their form depends 
on the initial parameters and functions, as well as on the temperature field, the problem 
under consideration is essentially nonlinear. 

We use the finite-difference method to solve the formulated problem. With this purpose 
in mind, the region D is covered by a grid with nodes {(Xn, Ym, tk), 0 ~ n ~ N, 0 ~ m ~ M, 
0 ~ k ~ K}, where in dependence on the geometry of the region V the intervals hln = Xn+ I - 
x n and hzm = Ym+1 - Ym with respect to the variables x and y need not be taken to be con- 
stant. In the latter case, the grid will be nonuniform. 

As is well known [7], for the solution of two-dimensional nonsteady-state equations of 
thermal conductivity it is expedient to use the so-called economical schemes, since they are 
absolutely stable and require a comparatively limited number of calculations in the transi- 
tion from one time level to another. Therefore, for purposes of approximating boundary-value 
problem (1)-(3), we choose a scheme of variable directions, which contains values of the func- 
tions both for the entire layer, and namely: t k = kT, as well as for half of the entire 
layer: tk+i/2 = t k + ~/2 (k = 0 ..... K), where ~ denotes the interval for the variable 
t e ]0, T]. 

The finite-difference analog of boundary-value problem (1)-(3), (9), (i0) in accordance 
with this scheme is written in the form: 

1 .~ (h+t /2 )  ~ ( h ) /  I ~ (k+ l /2 )  ! ~(k) 
a0,5x 

l (~(k+t) A(h@l/2)/ f A(k@l,+2) f ~(h+l). 
a0,5~ 

,,,,, : L,,. ((x,,, y,,,) E ~ ;  
(12 )  

( ] ) . m O  ~., .-,.(k ) <k) = ' [".. .  --mnm l((Xn, Ym, & ) E P ( k ) c Z ) ;  ( 1 3 )  
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l (h)  ..t R ( .h )  FnmO = ,~r~ ~Xn, y~, &) 6 ~ Z). ( 1 4 )  

Here 

l ~ n m  ==- r ' J n +  l . m  - En~)nm -~- Un 'C~n--I ,m,  

L ~ ( h )  ,~ (~)  . . ,~(k)  n 0 (k)  �9 2".-'n'n = O ~ m ~ n , m .  1 - -  Ym~Tnm ~ -  t ' m  n , m - -  1, 

~, bn, Cn, am, Bm, ~m (n = i, ..., N - i, m = i, ..., M - i) are the variable coefficients 
whose values for the case of polar and rectangular coordinates are given in [8]; @nm (k), 
fnm, Wnm (k), and s (k) are the values of the functions @, f, ~, and s at the nodes of the 
grids (Xn, Ym, tk) ; Zis the set of points of the finite-difference approximation of the boun- 
dary 8V of region V; p(k) and R (kj denote the sets of nodes of the approximations making up 
the region S u N {t = tk} and Ss N {t = tk}, so that consequently, p(k) U R (k) = Z; Fnm, ~nm 
are the corresponding finite-difference analogs of the operators F and %/8v. 

The idea behind the method of variable directions lies in the fact that if the values 
of @nm (k) (n = 0 ..... N; m = 0 ..... M) are known, then initially from the first of the equa- 
tions in (Ii) and boundary conditions (13) and (14) at the semicomplete layer we determine 
the values of @nm (k+I/2), and then from the second of the equations in (ii) and the same 
boundary conditions, we determine the values of @nm (k+1), and for their determination it is 
enough to make use of the sweeping method [9]. 

The difficulty involved in using this method to solve the stated problem involves the 
fact that, as was mentioned earlier, the boundaries of the regions S$ and S u are not known 
in advance and, consequently, we do not know the sets R (k+!) and p(k ,), needed to calculate 
the values of @nm (k+1~. 

To eliminate this difficulty, we propose an iteration procedure which allows us to con- 
struct a sequence of sets Pi (k+l) and Ri(k+1) (i ~ i < ~I' which within a finite number of 
iterations converges to the sought sets p(k+1) and R (k+ij. 

At some k-th time layer, let the values of @nm (k) be known and, consequently, the sets 

p(k) and R (k). We will choose Pl (k+l) = p(k), R1(k+!) = R(k). Then, if as a result of these 

calculations the derived values of @nm (k+l) on the set Pl (k+l) satisfy condition (5), and 

on the set R1(k+l) they satisfy condition (4), it is assumed that p(k+~) = p1(k+l), R(k+1) = 

Rl(k+l) and we make the transition to calculation of the temperature values on the next time 
level. In the opposite case, we form the set P2 (k+1) in accordance with the following prin- 

ciple: it contains all of the points from PI (k+1), at which condition (5) is satisfied, as 

well as those points from R1(k+l), at which condition (4) is not satisfied. We then determine 

the set R2 (k+1) = Z\P2 (k+1) and we repeat the calculation of the values of @nm (k+1). 

This procedure is repeated until we obtain the sets p(k+1) = Pi(k+l) and R (k+1) = Ri(k+1), 
on each of which conditions (5) and (4) are completely satisfied, respectively. 

Since we know the values of @nm (~ = f(Xn, Ym) from (12), and for a solution to exist 
for the optimization problem (1)-(7) we must satisfy the condition 

Pf <~ l (x, y, O) ((x, y) C V), 

so that we have p(0) = Z. R (~ = Q , and, using the above-described procedure, we can deter- 
values of ~ O~m(k) in the case of k = 1 ..... K. The values of the optimum control ~in~k~h ~ 

nm n the set R are determined from the formula 

Thus, on the basis of the variable-directions method, we have constructed an algorithm 
which makes it possible to find a solution for the optimization problem (1)-(7). 

We examined the optimization problem for high-speed heating of a hollow cylinder as an 
example, with limitations imposed on the temperature of the heated surface. 

It was assumed that the temperature field of the cylinder satisfies the following boun- 
dary-value problem: 

020  1 O0 1 OzO O0 
Op 2 p Op pz 0~2 O~ 
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Fig. i. Change over time in the values of temperature and the 

control functions: i) p = i, ~ = 0; 2) p = i, �9 = ~/2; 3) p = 
i, ~ = 3~/2. 

Fig. 2. Distribution of temperature values and of the control 
functions in terms of the angular coordinate ~ at the instant 
at which the maximum permissible temperature of the body s is 
attained: a) �9 = 2.55"10 -2 , and the ultimate heating: b) �9 = 
5.13.10 -2 . i) p = i; 2) p = k. 

((P,% "0 E[k, II x [0, 2hi • lO, T]); 

O(o, % 0)~0; 

ooap [p=~ =--H,[O(1, % x)--q(qo, "01; 

ao I =o, 
8p p=k 

and the control q(~, ~) is bounded from above by the function 2 + sin ~ . 

The temperature at the outside surface o~ the cylinder (Q = I) should not exceed s dur- 
ing the heating process, and it is our ultimate goal to achieve the minimum temperature at 
this same surface such that the temperature difference does not exceed the value of e, i.e., 
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mm @(I, % * o ) = l , - - e -  
~r 

The following values were assumed for the parameters in our calculations: k = 0.8, H, = 0.8, 
0 = 0.44 ~ = 0.2 

Figures 1 and 2 show the results from the calculation of the optimum control (dashed 
lines) and the corresponding temperature values. (solid lines). The dash-dot lines show the 
maximum possible values of the control function. 

As we can see from Fig. i, the control with values of ~ = 0 and ~ = 0/2 is two-staged. 
In the first stage, it is equal to the maximum possible value, while in the second stage it 
achieves equivalence with the given temperature value. At the point (i, 3~/2) the control 
is equal to the maximum possible value throughout the entire duration of the heating process, 
since the value of the temperature at the given point does not exceed ~,. 

Figure 2b shows that the optimum control for ~6[~i, ~2] is equal to the maximum possible 
value, while in the case of ~6[0, ~I[U]~2, 2n] it is lower than this value and results in the 
maintenance of the given temperature E,. 

It should be noted that although the method covered in this article for the optimization 
of the heating process referred to uniform materials, it can easily be generalized to the 
case of piecewise-uniform or nonuniform materials. 

NOTATION 

x, y, t, spatia ! coordinates, m, and time, sec, respectively; O(x, y, t), temperature 
of the material, K; V = 8V U V; V, region of change in the variables x and y; 8V, boundary 
of the region V; v, internal normal to the surface 8V; a , ~, and ~, respectively, the coeffi- 
cients of thermal diffusivity, m2/sec, thermal conductivity, W/(m'K), and heat exchange, W/ 
(ma'K); m(x, y,'t), the sought control function (the temperature of the heating medium), K; 
p = x/R2, ~ , and T = at~R22, dimensionless coordinates and time; k = RI/R2, H, = ~R2/~, R 1 
and R2, the inside and outside radii of the hollow cylinder, m. 
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